{ "id": "1807.04162", "version": "v1", "published": "2018-07-11T14:39:17.000Z", "updated": "2018-07-11T14:39:17.000Z", "title": "TherML: Thermodynamics of Machine Learning", "authors": [ "Alexander A. Alemi", "Ian Fischer" ], "comment": "Presented at the ICML 2018 workshop on Theoretical Foundations and Applications of Deep Generative Models", "categories": [ "cs.LG", "cond-mat.stat-mech", "stat.ML" ], "abstract": "In this work we offer a framework for reasoning about a wide class of existing objectives in machine learning. We develop a formal correspondence between this work and thermodynamics and discuss its implications.", "revisions": [ { "version": "v1", "updated": "2018-07-11T14:39:17.000Z" } ], "analyses": { "keywords": [ "machine learning", "thermodynamics", "wide class", "formal correspondence" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }