{ "id": "1807.03994", "version": "v1", "published": "2018-07-11T08:31:54.000Z", "updated": "2018-07-11T08:31:54.000Z", "title": "An upper bound for topological complexity", "authors": [ "Michael Farber", "Mark Grant", "Gregory Lupton", "John Oprea" ], "comment": "20 pages", "categories": [ "math.AT" ], "abstract": "In arXiv:1711.10132 a new approximating invariant ${\\mathsf{TC}}^{\\mathcal{D}}$ for topological complexity was introduced called $\\mathcal{D}$-topological complexity. In this paper, we explore more fully the properties of ${\\mathsf{TC}}^{\\mathcal{D}}$ and the connections between ${\\mathsf{TC}}^{\\mathcal{D}}$ and invariants of Lusternik-Schnirelmann type. We also introduce a new $\\mathsf{TC}$-type invariant $\\widetilde{\\mathsf{TC}}$ that can be used to give an upper bound for $\\mathsf{TC}$, $$\\mathsf{TC}(X)\\le {\\mathsf{TC}}^{\\mathcal{D}}(X) + \\left\\lceil \\frac{2\\dim X -k}{k+1}\\right\\rceil,$$ where $X$ is a finite dimensional simplicial complex with $k$-connected universal cover $\\tilde X$. The above inequality is a refinement of an estimate given by Dranishnikov.", "revisions": [ { "version": "v1", "updated": "2018-07-11T08:31:54.000Z" } ], "analyses": { "subjects": [ "55M30", "55P99" ], "keywords": [ "topological complexity", "upper bound", "finite dimensional simplicial complex", "lusternik-schnirelmann type", "type invariant" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }