{ "id": "1807.03961", "version": "v1", "published": "2018-07-11T06:26:33.000Z", "updated": "2018-07-11T06:26:33.000Z", "title": "Existence results for Schrödinger $p(x)$-Laplace equations involving critical growth in $\\mathbb{R}^N$", "authors": [ "Ky Ho", "Yun-Ho Kim", "Inbo Sim" ], "comment": "26 pages", "categories": [ "math.AP" ], "abstract": "We establish some existence results for Schr\\\"odinger $p(x)$-Laplace equations in $\\mathbb{R}^N$ with various potentials and critical growth of nonlinearity that may occur on some nonempty set, although not necessarily the whole space $\\mathbb{R}^N$. The proofs are mainly based on concentration-compactness principles in a suitable weighted variable exponent Sobolev space and its imbeddings.", "revisions": [ { "version": "v1", "updated": "2018-07-11T06:26:33.000Z" } ], "analyses": { "subjects": [ "35J62", "35B33", "35J20", "35J25", "35J70", "46E35", "47J10" ], "keywords": [ "laplace equations", "existence results", "critical growth", "schrödinger", "weighted variable exponent sobolev space" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable" } } }