{ "id": "1807.03529", "version": "v1", "published": "2018-07-10T08:50:07.000Z", "updated": "2018-07-10T08:50:07.000Z", "title": "Globally realizable components of local deformation rings", "authors": [ "Frank Calegari", "Matthew Emerton", "Toby Gee" ], "comment": "63 pages", "categories": [ "math.NT" ], "abstract": "Let n be either 2, or an odd integer greater than 1, and fix a prime p > 2(n + 1). Under standard \"adequate image\" assumptions, we show that the set of components of n-dimensional p-adic potentially semistable local Galois deformation rings that are seen by potentially automorphic compatible systems of polarizable Galois representations over some CM field is independent of the particular global situation. We also (under the same assumption on n) improve on the main potential automorphy result of [BLGGT14b], replacing \"potentially diagonalizable\" by \"potentially globally realizable\".", "revisions": [ { "version": "v1", "updated": "2018-07-10T08:50:07.000Z" } ], "analyses": { "keywords": [ "local deformation rings", "globally realizable components", "potentially semistable local galois", "p-adic potentially semistable local", "main potential automorphy result" ], "note": { "typesetting": "TeX", "pages": 63, "language": "en", "license": "arXiv", "status": "editable" } } }