{ "id": "1807.03294", "version": "v1", "published": "2018-07-09T17:58:12.000Z", "updated": "2018-07-09T17:58:12.000Z", "title": "Crystal structures for symmetric Grothendieck polynomials", "authors": [ "Cara Monical", "Oliver Pechenik", "Travis Scrimshaw" ], "comment": "44 pages, 6 figures", "categories": [ "math.CO", "math.AG", "math.KT" ], "abstract": "The symmetric Grothendieck polynomials representing Schubert classes in the $K$-theory of Grassmannians are generating functions for semistandard set-valued tableaux. We construct a type $A_n$ crystal structure on these tableaux. This crystal yields a new combinatorial formula for decomposing symmetric Grothendieck polynomials into Schur polynomials. For single-columns and single-rows, we give a new combinatorial interpretation of Lascoux polynomials (K-analogs of Demazure characters) by constructing a K-theoretic analog of crystals with an appropriate analog of a Demazure crystal. We relate our crystal structure to combinatorial models using excited Young diagrams, Gelfand-Tsetlin patterns via the $5$-vertex model, and biwords via Hecke insertion to compute symmetric Grothendieck polynomials.", "revisions": [ { "version": "v1", "updated": "2018-07-09T17:58:12.000Z" } ], "analyses": { "subjects": [ "05E05", "05E10", "17B37", "14M15" ], "keywords": [ "crystal structure", "grothendieck polynomials representing schubert classes", "symmetric grothendieck polynomials representing schubert", "combinatorial", "decomposing symmetric grothendieck polynomials" ], "note": { "typesetting": "TeX", "pages": 44, "language": "en", "license": "arXiv", "status": "editable" } } }