{ "id": "1807.02403", "version": "v1", "published": "2018-07-06T13:31:15.000Z", "updated": "2018-07-06T13:31:15.000Z", "title": "Global existence for the 3-D semilinear damped wave equations in the scattering case", "authors": [ "Yige Bai", "Mengyun Liu" ], "comment": "9 pages", "categories": [ "math.AP" ], "abstract": "We study the global existence of solutions to semilinear damped wave equations in the scattering case with derivative power-type nonlinearity on (1+3) dimensional nontrapping asymptotically Euclidean manifolds. The main idea is to exploit local energy estimate, together with local existence to convert the parameter $\\mu$ to small one.", "revisions": [ { "version": "v1", "updated": "2018-07-06T13:31:15.000Z" } ], "analyses": { "subjects": [ "35L05", "35L15", "35L71" ], "keywords": [ "semilinear damped wave equations", "global existence", "scattering case", "exploit local energy estimate", "dimensional nontrapping asymptotically euclidean manifolds" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }