{ "id": "1807.01931", "version": "v1", "published": "2018-07-05T10:21:44.000Z", "updated": "2018-07-05T10:21:44.000Z", "title": "Homotopy types of $SU(n)$-gauge groups over non-spin 4-manifolds", "authors": [ "Tseleung So" ], "comment": "19 pages", "categories": [ "math.AT" ], "abstract": "Let $M$ be an orientable, simply-connected, closed, non-spin 4-manifold and let $\\mathcal{G}_k(M)$ be the gauge group of the principal $G$-bundle over $M$ with second Chern class $k\\in\\mathbb{Z}$. It is known that the homotopy type of $\\mathcal{G}_k(M)$ is determined by the homotopy type of $\\mathcal{G}_k(\\mathbb{CP}^2)$. In this paper we investigate properties of $\\mathcal{G}_k(\\mathbb{CP}^2)$ when $G = SU(n)$ that partly classify the homotopy types of the gauge groups.", "revisions": [ { "version": "v1", "updated": "2018-07-05T10:21:44.000Z" } ], "analyses": { "subjects": [ "55P15", "54C35", "81T13" ], "keywords": [ "homotopy type", "gauge group", "second chern class" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }