{ "id": "1807.01890", "version": "v1", "published": "2018-07-05T08:18:22.000Z", "updated": "2018-07-05T08:18:22.000Z", "title": "Elementary proof of congruences modulo 25 for broken $k$-diamond partitions", "authors": [ "Shane Chern", "Dazhao Tang" ], "comment": "9 pages", "categories": [ "math.CO" ], "abstract": "Let $\\Delta_{k}(n)$ denote the number of $k$-broken diamond partitions of $n$. Quite recently, the second author proved an infinite family of congruences modulo 25 for $\\Delta_{k}(n)$ with the help of modular forms. In this paper, we aim to provide an elementary proof of this result.", "revisions": [ { "version": "v1", "updated": "2018-07-05T08:18:22.000Z" } ], "analyses": { "subjects": [ "05A17", "11P83" ], "keywords": [ "congruences modulo", "elementary proof", "broken diamond partitions", "second author", "modular forms" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }