{ "id": "1807.00906", "version": "v1", "published": "2018-07-02T21:49:32.000Z", "updated": "2018-07-02T21:49:32.000Z", "title": "Uncertainty in the Variational Information Bottleneck", "authors": [ "Alexander A. Alemi", "Ian Fischer", "Joshua V. Dillon" ], "comment": "10 pages, 7 figures. Accepted to UAI 2018 - Uncertainty in Deep Learning Workshop", "categories": [ "cs.LG", "stat.ML" ], "abstract": "We present a simple case study, demonstrating that Variational Information Bottleneck (VIB) can improve a network's classification calibration as well as its ability to detect out-of-distribution data. Without explicitly being designed to do so, VIB gives two natural metrics for handling and quantifying uncertainty.", "revisions": [ { "version": "v1", "updated": "2018-07-02T21:49:32.000Z" } ], "analyses": { "keywords": [ "variational information bottleneck", "uncertainty", "simple case study", "detect out-of-distribution data", "networks classification calibration" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }