{ "id": "1806.11491", "version": "v1", "published": "2018-06-29T15:47:43.000Z", "updated": "2018-06-29T15:47:43.000Z", "title": "On the reverse Faber-Krahn inequalities", "authors": [ "T. V. Anoop", "K. Ashok Kumar" ], "categories": [ "math.AP" ], "abstract": "For $N\\geq 2$, let $\\Omega\\subset \\mathbb{R}^N$ be a $C^1$ smooth multiply connected bounded domain. Let $\\Gamma_1$ be the outer boundary of $\\Omega$ and $\\Gamma_0, \\gamma_1,\\ldots \\gamma_n$ be the boundaries of the interior holes. For $p\\in (1,\\infty)$, we consider the first eigenvalue $\\nu_1(\\Omega)$ of the $p$-Laplacian with mixed boundary conditions: $$-\\Delta_p u= \\nu |u|^{p-2}u \\quad \\text{in } \\, \\Omega;\\qquad u=0 \\text{ on } \\Gamma_1;\\qquad \\frac{\\partial{u}}{\\partial{\\eta}}=0 \\text{ on } \\Gamma_0\\cup\\left(\\cup_{i=1}^n\\gamma_i\\right).$$ Let $\\Omega^\\#$ be the annulus centred at the origin having the same volume as $\\Omega$ and the same outer surface measure as $\\Gamma_1$. For $N=2,$ we show that $\\nu_1$ satisfies the following reverse Faber-Krahn inequality: \\begin{equation}\\label{R-RFK} \\nu_1(\\Omega) \\le \\nu_1(\\Omega^\\#) . \\end{equation} For $N\\ge 3,$ we obtain the above inequality, provided $\\Gamma_1$ is a sphere. In this case, we also show that if the equality holds, then $\\Omega$ is a translation of $\\Omega^\\#$. An analogous result is proved for the case when the Dirichlet condition on $\\Gamma_0$ and the Neumann condition on the rest of the boundaries.", "revisions": [ { "version": "v1", "updated": "2018-06-29T15:47:43.000Z" } ], "analyses": { "subjects": [ "35P30", "35M12", "35J92", "35J25", "35P15" ], "keywords": [ "reverse faber-krahn inequality", "outer surface measure", "mixed boundary conditions", "neumann condition", "outer boundary" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }