{ "id": "1806.11325", "version": "v1", "published": "2018-06-29T09:53:26.000Z", "updated": "2018-06-29T09:53:26.000Z", "title": "On the integrability of strongly regular graphs", "authors": [ "Jack H. Koolen", "Masood Ur Rehman", "Qianqian Yang" ], "categories": [ "math.CO" ], "abstract": "Koolen et al. showed that if a connected graph with smallest eigenvalue at least $-3$ has large minimal valency, then it is $2$-integrable. In this paper, we will prove that a lower bound for the minimal valency is 166.", "revisions": [ { "version": "v1", "updated": "2018-06-29T09:53:26.000Z" } ], "analyses": { "subjects": [ "05C50", "05E30", "11H99" ], "keywords": [ "strongly regular graphs", "integrability", "large minimal valency", "smallest eigenvalue", "lower bound" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }