{ "id": "1806.10888", "version": "v1", "published": "2018-06-28T11:29:24.000Z", "updated": "2018-06-28T11:29:24.000Z", "title": "A cyclic analogue of multiple zeta values", "authors": [ "Minoru Hirose", "Hideki Murahara", "Takuya Murakami" ], "categories": [ "math.NT" ], "abstract": "We consider a cyclic analogue of multiple zeta values (CMZVs), which has two kinds of expressions; series and integral expression. We prove an `integral$=$series' type identity for CMZVs. By using this identity, we construct two classes of $\\mathbb{Q}$-linear relations among CMZVs. One of them is a generalization of the cyclic sum formula for multiple zeta-star values. We also give an alternative proof of the derivation relation for multiple zeta values.", "revisions": [ { "version": "v1", "updated": "2018-06-28T11:29:24.000Z" } ], "analyses": { "subjects": [ "11M32" ], "keywords": [ "multiple zeta values", "cyclic analogue", "multiple zeta-star values", "cyclic sum formula", "integral expression" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }