{ "id": "1806.09651", "version": "v1", "published": "2018-06-25T18:22:24.000Z", "updated": "2018-06-25T18:22:24.000Z", "title": "Even cycles in dense graphs", "authors": [ "Neal Bushaw", "Andrzej Czygrinow", "Jangwon Yie" ], "comment": "28 pages", "categories": [ "math.CO" ], "abstract": "We will show that for $\\alpha>0$ there is $n_0$ such that if $G$ is a graph on $n\\geq n_0$ vertices such that $\\alpha n< \\delta(G)< (n-1)/2$, then for every $n_1+n_2+\\cdots +n_l= \\delta(G)$, $G$ contains a disjoint union of $C_{2n_1},C_{2n_2}, \\dots, C_{2n_l}$ unless $G$ has a very specific structure.", "revisions": [ { "version": "v1", "updated": "2018-06-25T18:22:24.000Z" } ], "analyses": { "keywords": [ "dense graphs", "disjoint union", "specific structure" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable" } } }