{ "id": "1806.09306", "version": "v1", "published": "2018-06-25T07:23:08.000Z", "updated": "2018-06-25T07:23:08.000Z", "title": "Uniform positive recursion frequency of any minimal dynamical system on a compact space", "authors": [ "Xiongping Dai" ], "categories": [ "math.DS" ], "abstract": "Using Gottschalk's notion\\,---\\,weakly locally almost periodic point, we show in this paper that if $f\\colon X\\rightarrow X$ is a minimal continuous transformation of a compact Hausdorff space $X$ to itself, then for all entourage $\\varepsilon$ of $X$, \\begin{equation*} \\inf_{x\\in X}\\left\\{\\liminf_{N-M\\to\\infty}\\frac{1}{N-M}\\sum_{n=M}^{N-1}1_{\\varepsilon[x]}(f^nx)\\right\\}>0. \\end{equation*} An analogous assertion also holds for each minimal $C^0$-semiflow $\\pi\\colon \\mathbb{R}_+\\times X\\rightarrow X$ and for any minimal transformation group with discrete amenable phase group.", "revisions": [ { "version": "v1", "updated": "2018-06-25T07:23:08.000Z" } ], "analyses": { "subjects": [ "37B05", "20M20" ], "keywords": [ "uniform positive recursion frequency", "minimal dynamical system", "compact space", "discrete amenable phase group", "compact hausdorff space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }