{ "id": "1806.08510", "version": "v1", "published": "2018-06-22T06:30:30.000Z", "updated": "2018-06-22T06:30:30.000Z", "title": "Nondegeneracy of positive solutions to a Kirchhoff problem with critical Sobolev growth", "authors": [ "Gongbao Li", "Chang-Lin Xiang" ], "categories": [ "math.AP" ], "abstract": "In this paper, we prove uniqueness and nondegeneracy of positive solutions to the following Kirchhoff equations with critical growth \\begin{eqnarray*} -\\left(a+b\\int_{\\mathbb{R}^{3}}|\\nabla u|^{2}\\right)\\Delta u=u^{5}, & u>0 & \\text{in }\\mathbb{R}^{3},\\end{eqnarray*} where $a,b>0$ are positive constants. This result has potential applications in singular perturbation problems concerning Kirchhoff equaitons.", "revisions": [ { "version": "v1", "updated": "2018-06-22T06:30:30.000Z" } ], "analyses": { "keywords": [ "critical sobolev growth", "positive solutions", "kirchhoff problem", "nondegeneracy", "singular perturbation problems concerning kirchhoff" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }