{ "id": "1806.08323", "version": "v1", "published": "2018-06-21T17:07:51.000Z", "updated": "2018-06-21T17:07:51.000Z", "title": "On equiangular lines in 17 dimensions and the characteristic polynomial of a Seidel matrix", "authors": [ "Gary R. W. Greaves", "Pavlo Yatsyna" ], "comment": "23 pages", "categories": [ "math.CO" ], "abstract": "For positive integers $e$, we find restrictions modulo $2^e$ on the coefficients of the characteristic polynomial $\\chi_S(x)$ of a Seidel matrix $S$. We show that, for a Seidel matrix of order $n$ even (resp. odd), there are at most $2^{\\binom{e-2}{2}}$ (resp. $2^{\\binom{e-2}{2}+1}$) possibilities for the congruence class of $\\chi_S(x)$ modulo $2^e\\mathbb Z[x]$. As an application of these results we obtain an improvement to the upper bound for the number of equiangular lines in $\\mathbb R^{17}$.", "revisions": [ { "version": "v1", "updated": "2018-06-21T17:07:51.000Z" } ], "analyses": { "keywords": [ "seidel matrix", "equiangular lines", "characteristic polynomial", "dimensions", "restrictions modulo" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable" } } }