{ "id": "1806.08189", "version": "v1", "published": "2018-06-21T12:05:48.000Z", "updated": "2018-06-21T12:05:48.000Z", "title": "A rigidity theorem for Hénon maps", "authors": [ "Sayani Bera", "Ratna Pal", "Kaushal Verma" ], "comment": "19 pages", "categories": [ "math.DS", "math.CV" ], "abstract": "The purpose of this note is two fold. First, we study the relation between a pair of H\\'{e}non maps that share the same forward and backward non-escaping sets. Second, it is shown that there exists a continuum of $Short-\\mathbb{C}^2$'s that are biholomorphically inequivalent and finally, we provide examples of $Short-\\mathbb{C}^2$'s that are neither Reinhardt nor biholomorphic to Reinhardt domains.", "revisions": [ { "version": "v1", "updated": "2018-06-21T12:05:48.000Z" } ], "analyses": { "subjects": [ "32H02", "32H50" ], "keywords": [ "hénon maps", "rigidity theorem", "reinhardt domains", "backward non-escaping sets", "biholomorphically inequivalent" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }