{ "id": "1806.08051", "version": "v1", "published": "2018-06-21T02:51:43.000Z", "updated": "2018-06-21T02:51:43.000Z", "title": "Decay of conical averages of the Fourier transform", "authors": [ "Terence L. J. Harris" ], "comment": "20 pages", "categories": [ "math.AP", "math.CA" ], "abstract": "Some improved $L^2$ fractal-type inequalities are obtained for the wave equation, using the analogue of the Du-Zhang method for the Schr\\\"odinger equation. These improve the known decay rates of conical averages for the Fourier transform of measures, in dimensions $d \\geq 4$.", "revisions": [ { "version": "v1", "updated": "2018-06-21T02:51:43.000Z" } ], "analyses": { "subjects": [ "42B37", "42B10" ], "keywords": [ "fourier transform", "conical averages", "decay rates", "wave equation", "du-zhang method" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }