{ "id": "1806.08048", "version": "v1", "published": "2018-06-21T02:25:07.000Z", "updated": "2018-06-21T02:25:07.000Z", "title": "Weighted Sobolev regularity and rate of approximation of the obstacle problem for the integral fractional Laplacian", "authors": [ "Juan Pablo Borthagaray", "Ricardo H. Nochetto", "Abner J. Salgado" ], "categories": [ "math.NA", "math.AP" ], "abstract": "We obtain regularity results in weighted Sobolev spaces for the solution of the obstacle problem for the integral fractional Laplacian. The weight is a power of the distance to the boundary. These bounds then serve us as a guide in the design and analysis of an optimal finite element scheme over graded meshes.", "revisions": [ { "version": "v1", "updated": "2018-06-21T02:25:07.000Z" } ], "analyses": { "keywords": [ "integral fractional laplacian", "weighted sobolev regularity", "obstacle problem", "approximation", "optimal finite element scheme" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }