{ "id": "1806.07881", "version": "v1", "published": "2018-06-20T08:51:40.000Z", "updated": "2018-06-20T08:51:40.000Z", "title": "A continuous spherical wavelet transform for~$\\mathcal C(\\mathcal S^n)$", "authors": [ "Ilona Iglewska-Nowak" ], "comment": "8 pages", "categories": [ "math.CA", "math-ph", "math.FA", "math.MP" ], "abstract": "In the present paper, a wavelet family over the $n$-dimensional sphere is constructed such that for each scale the wavelet is a polynomial and the inverse wavelet transform of a continuous function converges in the supremum norm.", "revisions": [ { "version": "v1", "updated": "2018-06-20T08:51:40.000Z" } ], "analyses": { "subjects": [ "42C40", "42B20" ], "keywords": [ "continuous spherical wavelet transform", "inverse wavelet transform", "dimensional sphere", "continuous function converges", "supremum norm" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }