{ "id": "1806.07866", "version": "v1", "published": "2018-06-20T17:50:10.000Z", "updated": "2018-06-20T17:50:10.000Z", "title": "Angles and Schauder basis in Hilbert spaces", "authors": [ "Bingzhe Hou", "Yang Cao", "Geng Tian", "Xinzhi Zhang" ], "comment": "6 pages", "categories": [ "math.FA" ], "abstract": "Let $\\mathcal{H}$ be a complex separable Hilbert space. We prove that if $\\{f_{n}\\}_{n=1}^{\\infty}$ is a Schauder basis of the Hilbert space $\\mathcal{H}$, then the angles between any two vectors in this basis must have a positive lower bound. Furthermore, we investigate that $\\{z^{\\sigma^{-1}(n)}\\}_{n=1}^{\\infty}$ can never be a basis of $L^{2}(\\mathbb{T},\\nu)$, where $\\mathbb{T}$ is the unit circle, $\\nu$ is a finite positive measure which is discrete or absolutely continuous to Lebesgue measure, and $\\sigma: \\mathbb{Z} \\rightarrow \\mathbb{N}$ is an arbitrary surjective and injective map.", "revisions": [ { "version": "v1", "updated": "2018-06-20T17:50:10.000Z" } ], "analyses": { "subjects": [ "46B15", "46B20", "47B37" ], "keywords": [ "schauder basis", "complex separable hilbert space", "positive lower bound", "unit circle", "finite positive measure" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }