{ "id": "1806.07738", "version": "v1", "published": "2018-06-20T13:59:26.000Z", "updated": "2018-06-20T13:59:26.000Z", "title": "Free infinite divisibility for generalized power distributions with free Poisson term", "authors": [ "Junki Morishita", "Yuki Ueda" ], "comment": "18 pages, 8 figures", "categories": [ "math.PR" ], "abstract": "We study free infinite divisibility for the class of generalized power distributions with free Poisson term by using a complex analytic technique and a calculation for the free cumulants and Hankel determinants. In particular, our main result follows that (i) if $X$ follows the free Generalized Inverse Gaussian distribution, then $X^r$ follows the classes UI (Univalent Inverse Cauchy transform) and FR (Free Regular) when $|r|\\ge1$, (ii) if $S$ follows the standard semicircle law and $u\\ge 2$, then $(S+u)^r$ follows the classes UI and FR when $r\\le -1$, and (iii) if $B_p$ follows the beta distribution with parameters $p$ and $3/2$, then (a) $B_p^r$ follows the classes UI and FR when $|r|\\ge 1$ and $01/2$.", "revisions": [ { "version": "v1", "updated": "2018-06-20T13:59:26.000Z" } ], "analyses": { "subjects": [ "46L54", "60E07", "32D15" ], "keywords": [ "free infinite divisibility", "free poisson term", "generalized power distributions", "classes ui", "free generalized inverse gaussian distribution" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable" } } }