{ "id": "1806.07651", "version": "v1", "published": "2018-06-20T10:27:37.000Z", "updated": "2018-06-20T10:27:37.000Z", "title": "Large deviations principle for the largest eigenvalue of the Gaussian beta-ensemble at high temperature", "authors": [ "Cambyse Pakzad" ], "comment": "16 pages", "categories": [ "math.PR" ], "abstract": "We consider the Gaussian beta-ensemble when $\\beta$ scales with $n$ the number of particles such that $\\displaystyle{{n}^{-1}\\ll \\beta\\ll 1}$. Under a certain regime for $\\beta$, we show that the largest particle satisfies a large deviations principle in $\\mathbb{R}$ with speed $n\\beta$ and explicit rate function. As a consequence, the largest particle converges in probability to $2$, the rightmost point of the semicircle law.", "revisions": [ { "version": "v1", "updated": "2018-06-20T10:27:37.000Z" } ], "analyses": { "subjects": [ "60B20", "60F10" ], "keywords": [ "large deviations principle", "largest eigenvalue", "gaussian beta-ensemble", "high temperature", "largest particle converges" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }