{ "id": "1806.07325", "version": "v1", "published": "2018-06-19T16:08:35.000Z", "updated": "2018-06-19T16:08:35.000Z", "title": "Partial regularity for manifold constrained p(x)-harmonic maps", "authors": [ "Cristiana De Filippis" ], "categories": [ "math.AP" ], "abstract": "We prove that manifold constrained $p(x)$-harmonic maps are $C^{1,\\beta}$-regular outside a set of zero $n$-dimensional Lebesgue's measure, for some $\\beta \\in (0,1)$. We also provide an estimate from above of the Hausdorff dimension of the singular set.", "revisions": [ { "version": "v1", "updated": "2018-06-19T16:08:35.000Z" } ], "analyses": { "keywords": [ "partial regularity", "dimensional lebesgues measure", "harmonic maps", "regular outside", "singular set" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }