{ "id": "1806.07303", "version": "v1", "published": "2018-06-19T15:20:17.000Z", "updated": "2018-06-19T15:20:17.000Z", "title": "A Variational Characterisation Of The Second Eigenvalue Of The P-Laplacian On Quasi Open Sets", "authors": [ "Nicola Fusco", "Shirsho Mukherjee", "Yi Ru-Ya Zhang" ], "comment": "31 pages", "categories": [ "math.AP" ], "abstract": "In this article, we prove a minimax characterisation of the second eigenvalue of the p-Laplacian operator on p-quasi open sets, using a construction based on minimizing movements. This leads also to an existence theorem for spectral functionals depending on the first two eigenvalues of the p-Laplacian.", "revisions": [ { "version": "v1", "updated": "2018-06-19T15:20:17.000Z" } ], "analyses": { "subjects": [ "35P30", "35J20", "58E30", "49Q10" ], "keywords": [ "second eigenvalue", "variational characterisation", "p-quasi open sets", "existence theorem", "minimax characterisation" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable" } } }