{ "id": "1806.06398", "version": "v1", "published": "2018-06-17T15:45:13.000Z", "updated": "2018-06-17T15:45:13.000Z", "title": "Diffusion limit for a slow-fast standard map", "authors": [ "Alex Blumenthal", "Jacopo De Simoi", "Ke Zhang" ], "comment": "23 pages", "categories": [ "math.DS" ], "abstract": "Consider the map $(x, y) \\mapsto (x + \\epsilon^{-\\alpha} \\sin (2\\pi x) + \\epsilon^{-1-\\alpha}z, z + \\epsilon \\sin(2\\pi x))$, which is conjugate to the Chirikov standard map with a large parameter. The parameter value $\\alpha = 1$ is related to \"scattering by resonance\" phenomena. For suitable $\\alpha$, we obtain a central limit theorem for the slow variable $z$ for a (Lebesgue) random initial condition. The result is proved by conjugating to the Chirikov standard map and utilizing the formalism of standard pairs. Our techniques also yield for the Chirikov standard map a related limit theorem and a \"finite-time\" decay of correlations result.", "revisions": [ { "version": "v1", "updated": "2018-06-17T15:45:13.000Z" } ], "analyses": { "keywords": [ "slow-fast standard map", "chirikov standard map", "diffusion limit", "random initial condition", "central limit theorem" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable" } } }