{ "id": "1806.05834", "version": "v1", "published": "2018-06-15T07:25:24.000Z", "updated": "2018-06-15T07:25:24.000Z", "title": "Counting points on genus-3 hyperelliptic curves with explicit real multiplication", "authors": [ "Simon Abelard", "Pierrick Gaudry", "Pierre-Jean Spaenlehauer" ], "comment": "To appear in the proceedings of the ANTS-XIII conference (Thirteenth Algorithmic Number Theory Symposium)", "categories": [ "math.NT", "cs.SC", "math.AG" ], "abstract": "We propose a Las Vegas probabilistic algorithm to compute the zeta function of a genus-3 hyperelliptic curve defined over a finite field $\\mathbb F_q$, with explicit real multiplication by an order $\\mathbb Z[\\eta]$ in a totally real cubic field. Our main result states that this algorithm requires an expected number of $\\widetilde O((\\log q)^6)$ bit-operations, where the constant in the $\\widetilde O()$ depends on the ring $\\mathbb Z[\\eta]$ and on the degrees of polynomials representing the endomorphism $\\eta$. As a proof-of-concept, we compute the zeta function of a curve defined over a 64-bit prime field, with explicit real multiplication by $\\mathbb Z[2\\cos(2\\pi/7)]$.", "revisions": [ { "version": "v1", "updated": "2018-06-15T07:25:24.000Z" } ], "analyses": { "keywords": [ "explicit real multiplication", "hyperelliptic curve", "counting points", "zeta function", "las vegas probabilistic algorithm" ], "tags": [ "conference paper" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }