{ "id": "1806.05811", "version": "v1", "published": "2018-06-15T05:43:02.000Z", "updated": "2018-06-15T05:43:02.000Z", "title": "Almost automorphy of invertible semiflows with compact Hausdorff phase spaces", "authors": [ "Xiongping Dai" ], "comment": "26 pages", "categories": [ "math.DS" ], "abstract": "Let $T\\times X\\rightarrow X, (t,x)\\mapsto tx$ be a minimal semiflow on a compact Hausdorff space $X$ with phase semigroup $T$ such that each $t\\in T$ is an invertible map of $X$. An $x\\in X$ is called an \\textit{a.a. point} of $(T,X)$ if $(t_nx, t_n^{-1}y)\\to(y, x^\\prime)$ implies $x=x^\\prime$ for every net $\\{t_n\\}$ in $T$. In this paper, we study the a.a. dynamics of invertible semiflows; and moreover, we first present a complete proof of Veech's structure theorem of an a.a. flow.", "revisions": [ { "version": "v1", "updated": "2018-06-15T05:43:02.000Z" } ], "analyses": { "subjects": [ "37B05", "37B20", "20M20" ], "keywords": [ "compact hausdorff phase spaces", "invertible semiflows", "automorphy", "compact hausdorff space", "veechs structure theorem" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable" } } }