{ "id": "1806.05532", "version": "v1", "published": "2018-06-14T13:32:23.000Z", "updated": "2018-06-14T13:32:23.000Z", "title": "Regularity results for the equation $u_{11}u_{22} = 1$", "authors": [ "Connor Mooney", "Ovidiu Savin" ], "categories": [ "math.AP" ], "abstract": "We study the equation $u_{11}u_{22} = 1$ in $\\mathbb{R}^2$. Our results include an interior $C^2$ estimate, classical solvability of the Dirichlet problem, and the existence of non-quadratic entire solutions. We also construct global singular solutions to the analogous equation in higher dimensions. At the end we state some open questions.", "revisions": [ { "version": "v1", "updated": "2018-06-14T13:32:23.000Z" } ], "analyses": { "keywords": [ "regularity results", "construct global singular solutions", "non-quadratic entire solutions", "open questions", "dirichlet problem" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }