{ "id": "1806.05443", "version": "v1", "published": "2018-06-14T10:07:30.000Z", "updated": "2018-06-14T10:07:30.000Z", "title": "The absolute values and cover projections for a class of operator matrices involving idempotents", "authors": [ "Yuan Li", "Xiaomei Cai", "Shuaijie Wang" ], "comment": "19", "categories": [ "math.FA" ], "abstract": "In this paper, we consider the formulas of the absolute value $|Q_{\\lambda,\\mu}|,$ where $Q_{\\lambda,\\mu} = \\left(\\begin{array}{cc}\\lambda I&P P^*&\\mu I\\end{array}\\right): \\mathcal{H} \\oplus \\mathcal{K}$ is self-adjoint operators in the Hilbert space $\\mathcal{H}\\oplus\\mathcal{K}.$ Then the positive parts and the cover projections of $Q_{\\lambda,0}$ are obtained. Also, we character the symmetry $J$ such that a projection $P$ is the $J$-projection. In particular, the minimal element of the symmetry $J$ with $JP\\geqslant0$ is given.", "revisions": [ { "version": "v1", "updated": "2018-06-14T10:07:30.000Z" } ], "analyses": { "keywords": [ "absolute value", "cover projections", "operator matrices", "idempotents", "self-adjoint operators" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }