{ "id": "1806.05428", "version": "v1", "published": "2018-06-14T09:23:53.000Z", "updated": "2018-06-14T09:23:53.000Z", "title": "Global L^r-estimates and regularizing effect for solutions to the p(t, x) -Laplacian systems", "authors": [ "Francesca Crispo", "Paolo Maremonti", "Michael Ruzicka" ], "categories": [ "math.AP" ], "abstract": "We consider the initial boundary value problem for the p(t, x)-Laplacian system in a bounded domain \\Omega. If the initial data belongs to L^{r_0}, r_0 \\geq 2, we give a global L^{r_0}({\\Omega})-regularity result uniformly in t>0 that, in the particular case r_0 =\\infty, implies a maximum modulus theorem. Under the assumption p- = \\inf p(t, x) > 2n/(n+r_0), we also state L^{r_0}- L^r estimates for the solution, for r \\geq r_0. Complete proofs of the results presented here are given in the paper [F. Crispo, P. Maremonti, M. Ruzicka, Global L^r-estimates and regularizing effect for solutions to the p(t, x) -Laplacian systems, accepted for publication on Advances in Differential Equations, 2017].", "revisions": [ { "version": "v1", "updated": "2018-06-14T09:23:53.000Z" } ], "analyses": { "keywords": [ "laplacian systems", "regularizing effect", "initial boundary value problem", "maximum modulus theorem", "initial data belongs" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }