{ "id": "1806.04814", "version": "v1", "published": "2018-06-13T01:41:37.000Z", "updated": "2018-06-13T01:41:37.000Z", "title": "Degree of the exceptional component of foliations in P3", "authors": [ "Artur Rossini", "Israel Vainsencher" ], "comment": "14 pages. Submitted to the special issue of RACSAM dedicated to the conference \"Geometry of Singularities and Differential Equations - Celebrating the contributions of Felipe Cano to the Theory of Singularities\"", "categories": [ "math.AG" ], "abstract": "The purpose of this work is to obtain the degree of the exceptional component of the space of holomorphic foliations of degree two and codimension one in P^3. We construct a parameter space as an explicit fiber bundle over the variety of complete flags. Using tools from equivariant intersection theory, especially Bott's formula, the degree is expressed as an integral over our parameter space.", "revisions": [ { "version": "v1", "updated": "2018-06-13T01:41:37.000Z" } ], "analyses": { "subjects": [ "14N10", "14N15", "37F75" ], "keywords": [ "exceptional component", "parameter space", "explicit fiber bundle", "equivariant intersection theory", "botts formula" ], "tags": [ "conference paper" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }