{ "id": "1806.04809", "version": "v1", "published": "2018-06-13T01:08:59.000Z", "updated": "2018-06-13T01:08:59.000Z", "title": "The Navier-Stokes equations with the Neumann boundary condition in an infinite cylinder", "authors": [ "Ken Abe" ], "comment": "28 pages", "categories": [ "math.AP" ], "abstract": "We prove unique existence of local-in-time smooth solutions of the Navier-Stokes equations for initial data in $L^{p}$ and $p \\in [3, \\infty)$ in an infinite cylinder, subject to the Neumann boundary condition.", "revisions": [ { "version": "v1", "updated": "2018-06-13T01:08:59.000Z" } ], "analyses": { "keywords": [ "neumann boundary condition", "infinite cylinder", "navier-stokes equations", "local-in-time smooth solutions", "unique existence" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable" } } }