{ "id": "1806.03022", "version": "v1", "published": "2018-06-08T08:37:59.000Z", "updated": "2018-06-08T08:37:59.000Z", "title": "Combinatorial identities involving harmonic numbers", "authors": [ "Necdet Batir" ], "comment": "submitted", "categories": [ "math.CO" ], "abstract": "In this work we prove a new combinatorial identity and applying it we establish many finite harmonic sum identities. Among many others, we prove that \\begin{equation*} \\sum_{k=1}^{n}\\frac{(-1)^{k-1}}{k}\\binom{n}{k}H_{n-k}=H_n^2+\\sum_{k=1}^{n}\\frac{(-1)^{k}}{k^2\\binom{n}{k}}, \\end{equation*} and \\begin{equation*} \\sum_{k=1}^{n}\\frac{(-1)^{k-1}}{k^2}\\binom{n}{k}H_{n-k}=\\frac{H_n[H_n^2+H_n^{(2)}]}{2}-\\sum_{k=0}^{n-1}\\frac{(-1)^k[H_n-H_k]}{(k+1)(n-k)\\binom{n}{k}}. \\end{equation*} Almost all of our results are new, while a few of them recapture know results.", "revisions": [ { "version": "v1", "updated": "2018-06-08T08:37:59.000Z" } ], "analyses": { "subjects": [ "05A10", "05A19" ], "keywords": [ "combinatorial identity", "harmonic numbers", "finite harmonic sum identities" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }