{ "id": "1806.02735", "version": "v1", "published": "2018-06-07T15:43:07.000Z", "updated": "2018-06-07T15:43:07.000Z", "title": "A supercongruence concerning truncated hypergeometric series ${}_nF_{n-1}$", "authors": [ "Chen Wang", "Hao Pan" ], "comment": "This is a preliminary manuscript", "categories": [ "math.NT", "math.CO" ], "abstract": "Let $n\\geq 3$ be an integer and $p$ be a prime with $p\\equiv 1\\pmod{n}$. In this paper, we show that $${}_nF_{n-1}\\bigg[\\begin{matrix} \\frac{n-1}{n}&\\frac{n-1}{n}&\\ldots&\\frac{n-1}{n} &1&\\ldots&1\\end{matrix}\\bigg | \\, 1\\bigg]_{p-1}\\equiv -\\Gamma_p\\bigg(\\frac{1}{n}\\bigg)^n\\pmod{p^3}, $$ where the truncated hypergeometric series $$_nF_{n-1}\\bigg[\\begin{matrix} x_1&x_2&\\ldots&x_n &y_1&\\cdots&y_{n-1}\\end{matrix}\\bigg | \\, z\\bigg]_m=\\sum_{k=0}^{m}\\frac{z^k}{k!}\\prod_{j=0}^{k-1}\\frac{(x_1+j)\\cdots(x_{n}+j)}{(y_1+j)\\cdots(y_{n-1}+j)} $$ and $\\Gamma_p$ denotes the $p$-adic gamma function. This confirms a conjecture of Deines, Fuselier, Long, Swisher and Tu.", "revisions": [ { "version": "v1", "updated": "2018-06-07T15:43:07.000Z" } ], "analyses": { "subjects": [ "33C20", "05A10", "11B65", "11A07", "33E50" ], "keywords": [ "supercongruence concerning truncated hypergeometric series", "adic gamma function", "conjecture" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }