{ "id": "1806.02518", "version": "v1", "published": "2018-06-07T05:39:44.000Z", "updated": "2018-06-07T05:39:44.000Z", "title": "Initial-Boundary value problem of the Navier-Stokes equations in the half space with nonhomogeneous data", "authors": [ "Tongkeun Chang", "Bum Ja Jin" ], "categories": [ "math.AP" ], "abstract": "This paper discusses the solvability (global in time) of the initial-boundary value problem of the Navier-stokes equations in the half space when the initial data $ h\\in \\dot{ B}_{q \\sigma}^{\\alpha-\\frac{2}{q}}(\\R_+)$ and the boundary data $ g\\in \\dot{ B}_q^{\\alpha-\\frac{1}{q},\\frac{\\al}{2}-\\frac{1}{2q}}({\\mathbb R}^{n-1}\\times {\\mathbb R}_+) $ with $g_n\\in \\dot B^{\\frac12 \\alpha}_q ({\\mathbb R}_+; \\dot B^{-\\frac1q}_q ({\\mathbb R}^{n-1}))\\cap L^q({\\mathbb R}_+;\\dot{B}^{\\alpha-\\frac{1}{q}}(\\Rn))$, for any $0<\\alpha<2$ and $q =\\frac{n+2}{\\alpha+1}$. Compatibility condition is required for $h$ and $g$.", "revisions": [ { "version": "v1", "updated": "2018-06-07T05:39:44.000Z" } ], "analyses": { "keywords": [ "initial-boundary value problem", "navier-stokes equations", "half space", "nonhomogeneous data", "paper discusses" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }