{ "id": "1806.00368", "version": "v1", "published": "2018-06-01T14:24:28.000Z", "updated": "2018-06-01T14:24:28.000Z", "title": "Zeta functions of nondegenerate hypersurfaces in toric varieties via controlled reduction in $p$-adic cohomology", "authors": [ "Edgar Costa", "David Harvey", "Kiran S. Kedlay" ], "comment": "17 pages, 3 figures", "categories": [ "math.NT", "math.AG" ], "abstract": "We give an interim report on some improvements and generalizations of the Abbott--Kedlaya--Roe method to compute the zeta function of a nondegenerate ample hypersurface in a projectively normal toric variety over $\\mathbb{F}_p$ in linear time in $p$. These are illustrated with a number of examples including K3 surfaces, Calabi--Yau threefolds, and a cubic fourfold. The latter example is a non-special cubic fourfold appearing in the Ranestad--Voisin coplanar divisor on moduli space; this verifies that the coplanar divisor is not a Noether--Lefschetz divisor in the sense of Hassett.", "revisions": [ { "version": "v1", "updated": "2018-06-01T14:24:28.000Z" } ], "analyses": { "subjects": [ "11G25", "14G10", "11M38", "11Y16", "14C25" ], "keywords": [ "zeta function", "adic cohomology", "nondegenerate hypersurfaces", "controlled reduction", "nondegenerate ample hypersurface" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }