{ "id": "1805.12411", "version": "v1", "published": "2018-05-31T10:30:13.000Z", "updated": "2018-05-31T10:30:13.000Z", "title": "Engel groups with an identity", "authors": [ "Pavel Shumyatsky", "Antonio Tortora", "Maria Tota" ], "categories": [ "math.GR" ], "abstract": "We give an affrmative answer to the question whether a residually finite Engel group satisfying an identity is locally nilpotent. More generally, for a residually finite group G with an identity, we prove that the set of right Engel elements of G is contained in the Hirsch-Plotkin radical of G. Given an arbitrary word w, we also show that the class of all groups G in which the w-values are right n-Engel and w(G) is locally nilpotent is a variety.", "revisions": [ { "version": "v1", "updated": "2018-05-31T10:30:13.000Z" } ], "analyses": { "subjects": [ "20F45", "20E26", "20F40" ], "keywords": [ "locally nilpotent", "right engel elements", "right n-engel", "residually finite engel group satisfying", "arbitrary word" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }