{ "id": "1805.12091", "version": "v1", "published": "2018-05-30T17:13:29.000Z", "updated": "2018-05-30T17:13:29.000Z", "title": "Automorphism groups of designs with $λ=1$", "authors": [ "William M. Kantor" ], "categories": [ "math.CO" ], "abstract": "If $G$ is a finite group and $k =q>2$ or $k=q+1$ for a prime power $q$ then, for infinitely many integers $v$, there is a $2$--$(v,k,1)$-design ${\\bf D}$ for which ${\\rm Aut} {\\bf D}\\cong G$. For each prime power $q > 7$ there is a design ${\\bf D}$ having the parameters of the point-line design of ${\\rm PG}(3,q)$ and for which ${\\rm Aut} {\\bf D}=1$.", "revisions": [ { "version": "v1", "updated": "2018-05-30T17:13:29.000Z" } ], "analyses": { "subjects": [ "05E20" ], "keywords": [ "automorphism groups", "prime power", "finite group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }