{ "id": "1805.11690", "version": "v1", "published": "2018-05-21T23:25:25.000Z", "updated": "2018-05-21T23:25:25.000Z", "title": "On the total number of principal series of a finite abelian group", "authors": [ "Lucian Bentea", "Marius Tărnăuceanu" ], "journal": "Sci. An. Univ. Ovidius Constan\\c{t}a, Ser. Mat. 18, No. 2, 41-52 (2010)", "categories": [ "math.GR" ], "abstract": "In this note we give a bijective proof for the explicit formula giving the total number of principal series of the direct product $\\mathbb{Z}_{p^{\\alpha_1}} \\times \\mathbb{Z}_{p^{\\alpha_2}}$, where $p$ is a prime number. This new proof is easier to generalize to arbitrary finite abelian groups than the original direct calculation method.", "revisions": [ { "version": "v1", "updated": "2018-05-21T23:25:25.000Z" } ], "analyses": { "keywords": [ "principal series", "total number", "original direct calculation method", "arbitrary finite abelian groups", "direct product" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }