{ "id": "1805.11558", "version": "v1", "published": "2018-05-29T16:07:57.000Z", "updated": "2018-05-29T16:07:57.000Z", "title": "Białynicki-Birula decomposition for reductive groups", "authors": [ "Joachim Jelisiejew", "Łukasz Sienkiewicz" ], "comment": "30 pages", "categories": [ "math.AG", "math.RT" ], "abstract": "We generalize the Bia{\\l}ynicki-Birula decomposition from actions of $G_m$ on smooth varieties to actions of linearly reductive group ${\\bf G}$ on finite type schemes and algebraic spaces. We also provide a relative version and briefly discuss the case of algebraic stacks. We define the Bia{\\l}ynicki-Birula decomposition functorially: for a fixed ${\\bf G}$-scheme $X$ and a monoid $\\overline{\\bf G}$ which compactifies ${\\bf G}$, the BB decomposition parameterizes ${\\bf G}$-schemes over $X$ for which the ${\\bf G}$-action extends to the $\\overline{\\bf G}$-action. The freedom of choice of $\\overline{\\bf G}$ makes the theory richer than the $G_m$-case.", "revisions": [ { "version": "v1", "updated": "2018-05-29T16:07:57.000Z" } ], "analyses": { "subjects": [ "14L30", "20G15", "14D22", "20G05" ], "keywords": [ "reductive group", "białynicki-birula decomposition", "finite type schemes", "bb decomposition parameterizes", "action extends" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable" } } }