{ "id": "1805.10436", "version": "v1", "published": "2018-05-26T06:56:48.000Z", "updated": "2018-05-26T06:56:48.000Z", "title": "Hausdorff dimension in inhomogeneous Diophantine approximation", "authors": [ "Yann Bugeaud", "Dong Han Kim", "Seonhee Lim", "MichaƂ Rams" ], "comment": "16 pages", "categories": [ "math.NT", "math.DS" ], "abstract": "Let $\\alpha$ be an irrational real number. We show that the set of $\\epsilon$-badly approximable numbers \\[ \\mathrm{Bad}^\\varepsilon (\\alpha) := \\{x\\in [0,1]\\, : \\, \\liminf_{|q| \\to \\infty} |q| \\cdot \\| q\\alpha -x \\| \\geq \\varepsilon \\} \\] has full Hausdorff dimension for some positive $\\epsilon$ if and only if $\\alpha$ is singular on average. The condition is equivalent to the average $\\frac{1}{k} \\sum_{i=1, \\cdots, k} \\log a_i$ of the logarithms of the partial quotients $a_i$ of $\\alpha$ going to infinity with $k$. We also consider one-sided approximation, obtain a stronger result when $a_i$ tends to infinity, and establish a partial result in higher dimensions.", "revisions": [ { "version": "v1", "updated": "2018-05-26T06:56:48.000Z" } ], "analyses": { "subjects": [ "11K60", "28A80", "37E10" ], "keywords": [ "inhomogeneous diophantine approximation", "irrational real number", "full hausdorff dimension", "stronger result", "partial quotients" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }