{ "id": "1805.10084", "version": "v1", "published": "2018-05-25T11:27:16.000Z", "updated": "2018-05-25T11:27:16.000Z", "title": "Radio number for middle graph of paths", "authors": [ "Devsi Bantva" ], "comment": "8 Pages, CTGTC 2016 conference proceedings paper", "journal": "Electronic Notes in Discrete Mathematics, Volume 63, Pages 93-100, 2017", "doi": "10.1016/j.endm.2017.11.003", "categories": [ "math.CO" ], "abstract": "For a connected graph $G$, let $diam(G)$ and $d(u,v)$ denote the diameter of $G$ and distance between $u$ and $v$ in $G$. A radio labeling of a graph $G$ is a mapping $\\varphi : V(G) \\rightarrow \\{0,1,2,...\\}$ such that $|\\varphi(u)-\\varphi(v)| \\geq diam(G) + 1 - d(u,v)$ for every pair of distinct vertices $u, v$ of $G$. The span of $\\varphi$ is defined as span($\\varphi$) = $\\max\\{|\\varphi(u)-\\varphi(v)| : u, v \\in V(G)\\}$. The radio number $rn(G)$ of $G$ is defined as $rn(G)$ = $\\min\\{$span($\\varphi$) : $\\varphi$ is a radio labeling of $G\\}$. In this paper, we determine the radio number for middle graph of paths.", "revisions": [ { "version": "v1", "updated": "2018-05-25T11:27:16.000Z" } ], "analyses": { "subjects": [ "05C15", "05C78" ], "keywords": [ "radio number", "middle graph", "radio labeling", "distinct vertices" ], "tags": [ "conference paper", "journal article" ], "publication": { "publisher": "Elsevier" }, "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }