{ "id": "1805.10052", "version": "v1", "published": "2018-05-25T09:28:22.000Z", "updated": "2018-05-25T09:28:22.000Z", "title": "Homological Dimension of Solvable Groups", "authors": [ "Peter Kropholler", "Conchita Martínez-Pérez" ], "categories": [ "math.GR" ], "abstract": "In this paper we prove that the homological dimension of an elementary amenable group over an arbitrary commutative coefficient ring is either infinite or equal to the Hirsch length of the group. Established theory gives simple group theoretical criteria for finiteness of homological dimension and so we can infer complete information about this invariant for elementary amenable groups. Stammbach proved the special case of solvable groups over coefficient fields of characteristic zero in an important paper dating from 1970.", "revisions": [ { "version": "v1", "updated": "2018-05-25T09:28:22.000Z" } ], "analyses": { "subjects": [ "20J05" ], "keywords": [ "homological dimension", "solvable groups", "elementary amenable group", "simple group theoretical criteria", "infer complete information" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }