{ "id": "1805.09680", "version": "v1", "published": "2018-05-23T08:08:29.000Z", "updated": "2018-05-23T08:08:29.000Z", "title": "Inequalities on the joint and generalized spectral and essential spectral radius of the Hadamard geometric mean of bounded sets of positive kernel operators", "authors": [ "A. Peperko" ], "comment": "arXiv admin note: substantial text overlap with arXiv:1612.01765, arXiv:1612.01767", "categories": [ "math.FA" ], "abstract": "Let $\\Psi$ and $\\Sigma$ be bounded sets of positive kernel operators on a Banach function space $L$. We prove several refinements of the known inequalities $$\\rho \\left(\\Psi ^{\\left( \\frac{1}{2} \\right)} \\circ \\Sigma ^{\\left( \\frac{1}{2} \\right)} \\right) \\le \\rho (\\Psi \\Sigma) ^{\\frac{1}{2}} \\;\\; \\mathrm{and}\\;\\; \\hat{\\rho} \\left(\\Psi ^{\\left( \\frac{1}{2} \\right)} \\circ \\Sigma ^{\\left( \\frac{1}{2} \\right)} \\right) \\le \\hat{\\rho} (\\Psi \\Sigma) ^{\\frac{1}{2}} $$ for the generalized spectral radius $\\rho$ and the joint spectral radius $\\hat{\\rho}$, where $\\Psi ^{\\left( \\frac{1}{2} \\right)} \\circ \\Sigma ^{\\left( \\frac{1}{2} \\right)} $ denotes the Hadamard (Schur) geometric mean of the sets $\\Psi $ and $\\Sigma$. Furthermore, we prove that analogous inequalities hold also for the generalized essential spectral radius and the joint essential spectral radius in the case when $L$ and its Banach dual $L^*$ have order continuous norms.", "revisions": [ { "version": "v1", "updated": "2018-05-23T08:08:29.000Z" } ], "analyses": { "keywords": [ "positive kernel operators", "hadamard geometric mean", "bounded sets", "generalized spectral", "inequalities" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }