{ "id": "1805.09193", "version": "v1", "published": "2018-05-23T14:22:19.000Z", "updated": "2018-05-23T14:22:19.000Z", "title": "Global existence and boundedness of solutions to a chemotaxis-consumption model with singular sensitivity", "authors": [ "Johannes Lankeit", "Giuseppe Viglialoro" ], "categories": [ "math.AP" ], "abstract": "In this paper we study the zero-flux chemotaxis-system \\begin{equation*} \\begin{cases} u_t=\\Delta u -\\chi \\nabla \\cdot (\\frac{u}{v} \\nabla v) \\\\ v_t=\\Delta v-f(u)v \\end{cases} \\end{equation*} in a smooth and bounded domain $\\Omega$ of $\\mathbb{R}^2$, with $\\chi>0$ and $f\\in C^1(\\mathbb{R})$ essentially behaving like $u^\\beta$, $0<\\beta<1$. Precisely for $\\chi<1$ and any sufficiently regular initial data $u(x,0)\\geq 0$ and $v(x,0)>0$ on $\\bar{\\Omega}$, we show the existence of global classical solutions. Moreover, if additionally $m:=\\int_\\Omega u(x,0)$ is sufficiently small, then also their boundedness is achieved.", "revisions": [ { "version": "v1", "updated": "2018-05-23T14:22:19.000Z" } ], "analyses": { "subjects": [ "35Q92", "35A01", "35K55", "35K51", "92C17" ], "keywords": [ "global existence", "chemotaxis-consumption model", "singular sensitivity", "boundedness", "sufficiently regular initial data" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }