{ "id": "1805.08085", "version": "v1", "published": "2018-05-21T14:20:14.000Z", "updated": "2018-05-21T14:20:14.000Z", "title": "On upper bound for global dimension of Auslander--Dlab--Ringel algebras", "authors": [ "Mayu Tsukamoto" ], "comment": "10 pages", "categories": [ "math.RT" ], "abstract": "Lin and Xi introduced Auslander--Dlab--Ringel (ADR) algebras of seimlocal modules as a generalization of original ADR algebras and showed that they are quasi-hereditary. In this paper, we prove that such algebras are always left-strongly quasi-hereditary. As an application, we give a better upper bound for global dimension of ADR algebras of semilocal modules. Moreover we describe characterizations of original ADR algebras to be strongly quasi-hereditary.", "revisions": [ { "version": "v1", "updated": "2018-05-21T14:20:14.000Z" } ], "analyses": { "subjects": [ "16G10", "16E10" ], "keywords": [ "global dimension", "auslander-dlab-ringel algebras", "original adr algebras", "better upper bound", "semilocal modules" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }