{ "id": "1805.07990", "version": "v1", "published": "2018-05-21T11:24:38.000Z", "updated": "2018-05-21T11:24:38.000Z", "title": "Independence of Artin L-functions", "authors": [ "Mircea Cimpoeas", "Florin Nicolae" ], "comment": "10 pages", "categories": [ "math.NT" ], "abstract": "Let $K/\\mathbb Q$ be a finite Galois extension. Let $\\chi_1,\\ldots,\\chi_r$ be $r\\geq 1$ distinct characters of the Galois group with the associated Artin L-functions $L(s,\\chi_1),\\ldots, L(s,\\chi_r)$. Let $m\\geq 0$. We prove that the derivatives $L^{(k)}(s,\\chi_j)$, $1\\leq j\\leq r$, $0\\leq k\\leq m$, are linearly independent over the field of meromorphic functions of order $<1$. From this it follows that the L-functions corresponding to the irreducible characters are algebraically independent over the field of meromorphic functions of order $<1$.", "revisions": [ { "version": "v1", "updated": "2018-05-21T11:24:38.000Z" } ], "analyses": { "subjects": [ "11R42", "11M41" ], "keywords": [ "independence", "meromorphic functions", "finite galois extension", "galois group", "distinct characters" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }