{ "id": "1805.07028", "version": "v1", "published": "2018-05-18T02:52:52.000Z", "updated": "2018-05-18T02:52:52.000Z", "title": "Free locally convex spaces and the Ascoli property", "authors": [ "Saak Gabriyelyan" ], "categories": [ "math.GN", "math.FA" ], "abstract": "T. Banakh showed in [2] that if $X$ is a Dieudonn\\'{e} complete space, then the free locally convex space $L(X)$ on $X$ is an Ascoli space if and only if $X$ is a countable discrete space. We give an independent, short and clearer proof of Banakh's result and remove the condition of being a Dieudonn\\'{e} complete space. Thus we have the following result: the free locally convex space $L(X)$ over a Tychonoff space $X$ is an Ascoli space if and only if $X$ is a countable discrete space.", "revisions": [ { "version": "v1", "updated": "2018-05-18T02:52:52.000Z" } ], "analyses": { "subjects": [ "46A03", "54D50", "22A05", "54A25" ], "keywords": [ "free locally convex space", "ascoli property", "countable discrete space", "complete space", "ascoli space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }