{ "id": "1805.06578", "version": "v1", "published": "2018-05-17T02:09:05.000Z", "updated": "2018-05-17T02:09:05.000Z", "title": "On the edge Szeged index of unicyclic graphs with given diameter", "authors": [ "Shengjie He", "Rong-Xia Hao", "Aimei Yu" ], "categories": [ "math.CO" ], "abstract": "The edge Szeged index of a graph $G$ is defined as $Sz_{e}(G)=\\sum\\limits_{uv\\in E(G)}m_{u}(uv|G)m_{v}(uv|G)$, where $m_{u}(uv|G)$ (resp., $m_{v}(uv|G)$) is the number of edges whose distance to vertex $u$ (resp., $v$) is smaller than the distance to vertex $v$ (resp., $u$), respectively. In this paper, we characterize the graph with minimum edge Szeged index among all the unicyclic graphs with given order and diameter.", "revisions": [ { "version": "v1", "updated": "2018-05-17T02:09:05.000Z" } ], "analyses": { "keywords": [ "unicyclic graphs", "minimum edge szeged index" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }